Highlights and Challenges
Niklas Andersson
Chalmers University of Technology
Department of Mechanics and Maritime Sciences
Division of Fluid Dynamics
niklas.andersson@chalmers.se
https://nikander.github.io/Presentations/
Compressible flow is a branch of fluid mechanics that deals with flows having significant changes in fluid density
"Significant changes in fluid density"
- what does that mean?
Upper frequency limit \(\left(f=10000\ Hz\right)\):
\(\lambda=c/f=0.034\ m\ \Rightarrow \Delta x < \lambda/20 = 0.0017\ m\)
Number of cells: \((L/\Delta x)^3>{\class{MyRed}{200 \times 10^6}}\)
The analogy between the non-linear flow and the linear theory of acoustics
Starting point:
continuity equation:
\[\frac{\partial \rho}{\partial t}+\frac{\partial(\rho u_i)}{\partial x_i}=0\]momentum equation:
\[\frac{\partial (\rho u_i)}{\partial t}+\frac{\partial (\rho u_i u_j)}{\partial x_j}=\frac{\partial }{\partial x_j}(\sigma_{ij}-p \delta_{ij})\]Step 1. the temporal derivative of the continuity equation
\[\frac{\partial^2 \rho}{\partial t^2}+{\class{MyRed}{\frac{\partial^2(\rho u_i)}{\partial x_i \partial t}}}=0\]Step 2. the divergence of the momentum equation
\[{\class{MyRed}{\frac{\partial^2 (\rho u_i)}{\partial x_i \partial t}}}+\frac{\partial^2 (\rho u_i u_j)}{\partial x_i \partial x_j}=\frac{\partial^2 }{\partial x_i \partial x_j}(\sigma_{ij}-p \delta_{ij})\]Step 3. eliminate the highlighted terms
\[\frac{\partial^2 \rho}{\partial t^2}=\frac{\partial^2 }{\partial x_i \partial x_j}(\rho u_i u_j - \sigma_{ij} + p \delta_{ij})\]Now, subtracting \({\class{MyBlue}{a_\infty^2\frac{\partial^2 \rho}{\partial x_i^2}}}\) on each side gives us Lighthill's acoustic analogy
\[\frac{\partial^2 \rho}{\partial t^2}-{\class{MyBlue}{a_\infty^2\frac{\partial^2 \rho}{\partial x_i^2}}}=\frac{\partial^2 T_{ij}}{\partial x_i \partial x_j}\]where \(T_{ij}\) is the Lighthill stress tensor defined as
\[T_{ij}=\rho u_i u_j - \sigma_{ij} + (p-{\class{MyBlue}{a_\infty^2\rho}}) \delta_{ij}\](\(a_\infty\) is the speed of sound in an observer location)
\(\Omega\) | volume containing sound sources |
\({\mathbf{y}}\) | observer location |
\({\mathbf{x}}\) | source location |
\(r\) | distance between source and observer |
\(\tau_r\) | retarded time |
Assume linear mapping, \(B\), of the flow dynamics
\[Q^{(n+1)}=BQ^{(n)}\]where \(Q^n\) is the flow field at time \(t^n\) and \(Q^{n+1}\) the flow field at time \(t^{n+1}=(t^n+\Delta t)\)
Using SVD, the matrix \(V_n\) can be decomposed as
\[V_n=U\Sigma W^*\]and since \(V_{n+1}=BV_n\)
\[V_{n+1}=BV_n=B U\Sigma W^*\]\(U\) | \(\left(m\times p\right)\) | \(\Sigma\) | \(\left(p\times p\right)\) | \(W^*\) | \(\left(p\times n\right)\) |
Multiplying both sides by \(U^*\) from the left
\[{\class{MyGreen}{U^*V_{n+1}}}=\underbrace{\class{MyRed}{U^*BU}}_{\class{MyBlue}{C}}{\class{MyGreen}{\Sigma W^*}}\]where \(\class{MyBlue}{C}\) is the projection of the system matrix (\(B\)) on \(U\)
The projected system matrix can now be obtained without direct access to \(\class{MyRed}{B}\) as
\[\class{MyBlue}{C}={\class{MyGreen}{U^*V_{n+1}W\Sigma^{-1}}}\]Screech tone cancellation using fluid injection
Helical mode with the screech frequency detected using Dynamic Mode Decomposition (DMD)
Prediction of side loads during a space nozzle start-up sequence
Investigation of the aerodynamics of an intermediated compressor duct with integrated bleed system
Prediction of fan outlet guide vane broadband noise using detailed numerical methods
Prediction of tonal noise of open rotors
A periodic solution can be represented by an infinite series of harmonics
\[Q(t)=\sum_{n=-\infty}^{\infty}\hat{Q}_n e^{i\omega_n t}\]Truncating the series, we can get an approximation of the periodic solution
\[Q(t)\approx\sum_{n=-N_h}^{N_h}{\hat{Q}}_n e^{i\omega_n t}\]Nyquist sampling theorem:
A solution containing \(N_h\) harmonics is uniquely determined from its values at \(N_t=\left(2N_h+1\right)\) samples uniformly distributed over one period
Assume that a problem has a true steady-state solution, could the global mode information provided by DMD be used to find the steady-state condition?
At steady state
\[Q^{(n+1)}=Q^{(n)}=Q\]and thus the linear relation
\[Q^{(n+1)}=BQ^{(n)}+b\]reduces to
\[(I-B)Q=b\]Introducing a correction \(\Delta Q\) that is obtained by subtracting sample \(Q^{(n+1)}\) from \(Q\), we get
\[(I-B)\Delta Q=\underbrace{(B-I)Q^{(n+1)}+b}_{\class{MyGreen}{Q^{(n+2)}-Q^{(n+1)}=D}}\]where the right hand side corresponds to the last vector in \(V_{n+1}\)
Introduce \(\Delta q\) defined by \(\Delta Q=U\Delta q\)
\[(I-B)\Delta Q=(I-B)U\Delta q={\class{MyGreen}{D}}\]Multiplying both sides with \(U^*\) from the left
\[{\class{MyRed}{U^*}}(I-{\class{MyRed}{B}}){\class{MyRed}{U}}\Delta q= \left\{ \class{MyBlue}{C}=\class{MyRed}{U^*BU},\ U^*U=I \right\}= (I-{\class{MyBlue}{C}})\Delta q = U^*{\class{MyGreen}{D}}\] \[\Rightarrow \Delta q = (I-{\class{MyBlue}{C}})^{-1}U^*{\class{MyGreen}{D}}\]From the definition of \(\Delta Q\) we get
\[Q=Q^{(n+1)}+\Delta Q=Q^{(n+1)}+U\Delta q\] \[Q=Q^{(n+1)}+U(I-{\class{MyBlue}{C}})^{-1}U^*{\class{MyGreen}{D}}\]where
\[{\class{MyBlue}{C}}=U^*V_{n+1}W\Sigma^{-1}\]Low-Mach-number (\(M<0.08\)) turbine cascade flow (2D)
Stirling engine optimization
Robust multi-objective optimization for compressor blade design
Evaluation of noise canceling barriers for trains in urban areas
Prediction of combustion instabilities